International Journal of Innovative Social Science & Humanities Research ISSN : 2347-7660

H FUNCTION OF TWO VARIABLES AND ITS APPLICATION

Anill Ramawat,

Department of Mathematics, Government College, Sojat City, Pali, Rajasthan, India.

ABSTRACT

This paper deals with the evaluation of an integral involving product of Bessel polynomials and H -function
of two variables. By making use of this integral the solution of the time-domain synthesis problem is
investigated.
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INTRODUCTION function of two variables may be reduced to almost

all elementary functions and special functions
appearing in applied Mathematics Erdelyi, A. et. al.
([2],p.215-222). The special solution derived in the
paper is of general character and hence may

The object of this paper is to evaluate an integral

involving Bessel polynomial and the H -function of
two variables due to Singh and Mandia [8], and to encompass several cases of interest.
apply it in obtaining a particular solution of the

classical problem known as the ‘time-domain The H -function of two variables will be
synthesis problem’, occurring in the electric network defined and represented by Singh and Mandia [8] in

theory. On specializing the parameters, the H - the following manner:
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Where X and Y are not equal to zero (real or complex), and an empty product is interpreted as unity

P;» G, M, M; are non-negative integers such that 0<n<p,0< m; <q; (1=12,3;,]=2,3) . Allthe
a;(j=12..,p)0;(j=12..0).¢;(j=12,..p,).d;(j=12,...0,),

ej(j =12,... p;), f;(1 =12,...,q;) are complex parameters.

7;20(j=12,...,p,),0; 20(j =12,...,,) (not all zero simultaneously), similarly

E, >0()J=12,..., py), F >0(J=12,...,0;) (not all zero simultaneously). The exponents

K;(1=12,..,n,),L;(j=m,+1...,0,),R;(j =12,..,1n,),S;(j =m; +1,...,05) can take on non-

negative values.

The contour L, isin & -plane and runs from —icoto +ioo . The poles of I_‘(dj —5j§)(j =12,...,m,)lie to the

Ki R R
right and the poles of F{(l—Cj +;/j§)} (J =1,2,...,n2),1"(1—aj +a, &+ Ajn)(j =1,2,...,n,) to the left

of the contour. For Kj (j =12,.., nz) not an integer, the poles of gamma functions of the numerator in (1.3) are

converted to the branch points.

The contour L, isin 77 -plane and runs from —icoto +ioo . The poles of F( f, - an)(j =1,2,...,m,) lie to the
right and the poles of F{(l—ej + EJ.77)}Rj (j=L12,.., ng),l"(l— a;+a;&+ Ajn)(j =1,2,...,n) to the left
of the contour. For Rj (j =12,..., n3) not an integer, the poles of gamma functions of the numerator in (1.4) are
converted to the branch points.

The following results are needed in the analysis that follows:

Bessel polynomials are defined as

y,(X;a,b) = z (=n).@+n-1), (—ij =K {—n, a+n —1;—5} (1.5)
r=0 r! b b

Orthogonality property of Bessel polynomials is derived by Exton ([4],p.215, (14)):
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0

Where Re(a) <1-m—n.
The integral defined by Bajpai et.al. [1] is also required:

0 1
Ix“’le xy (x;a,1)dx = [o-nr@a-o-1+n) (1.7)
0 'a-o-1)

Where Re(c+n)<0,Re(a—o—-1+n)>0,0 #-1,-2,....

INTEGRAL

The integral to be evaluated is
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Where

a; -1 a; -1

<0

Rlo+A4 +n|<0,Rloc—a—-n+1+4

&, &,

For j=12,...,n;0#—1—2,..., and conditions (1.7), (1.8) and (1.9) are also satisfied.
Proof: To establish (2.1), express the H -function of two variables in its integrand as a Mellin-Barnes type integral

(1.1) and interchange the order of integration which is permissible due to the absolute convergence of the
integrals involved in the process, we obtain

47112 [[ (&), muv’ { [eremexy (x a,l)dx}dédn

Ll L2
Now evaluating the inner integral with the help of (1.16), it becomes
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Which on applying (1.1), yields the desired result (2.1).

Special Case: If we take

K;=1j=12...,n),L; =1(j=m,+1,...,q,),R; =1(j =12,...,n,),S; =1(j =m, +1,...,0,)in (L.1),

the H -function of two variables reduces to H -function of two variables due to [7], and we get
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Provided all condition are satisfied given in (2.1). construct an electrical network consisting of finite

number of components R,C and | which are all

SOLUTION OF THE TIME-DOMAIN fixed, linear and positive, such that output of f, (t)
SYNTHESIS PROBLEM OF SIGNALS: , resulting from a delta-function O (t) approximates

f(t)on 0 <t <o0insome sense.
The classical time-domain synthesis problem

occurring in electric network theory is as follows ([4], In order to obtain a solution of this
p. 139): problem, we expand the function f (t)intoa
Given an electrical signal described by a real valued convergent series:

conventional function f (t)on O <t <o,
&) =>w, (3.1)
n=0

Or real-valued function y, (t) . Let every partial sum

N
fy(t)=> w,(t); N=012,.. (3.2)
n=0

Possesses the two properties

(i) fy(t)=0,for —o<t<0

(ii) The Laplace transform FN (S) of FN (t) is a rational function having a zero as S =00 and all its poles in the left-

hand S -plane, except possibly for a simple pole at the origin.

After choosing N in (3.2) sufficiently large whatever approximation criterion is being used, an orthogonal series
expansion may be employed. The Bessel polynomial transformation and (1.15) yields as immediate solution in the
following form:

a-2 1

f=3C,tze 2y, (tal)
n=0

Where

a-2

['(a+n)(2n+a-1)sin ﬂa.[ f(t)t 2y, (t;al)dt (3:3)
0

nlin+a-Yz

C, = (-1’

Where R(a) <1-2n.

The function f (t)is continuous and of bounded variation in the open interval (0, ) .
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PARTICULAR SOLUTION OF THE PROBLEM

The particular solution of the problem is:
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&,

<2,j=12,..,n;0#-1-2,....and result (1.7), (1.8) and

(1.9) are also holds.

Proof: Let us consider
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Equation (4.2) is valid, since f (t) is continuous and of bounded variation in the open interval (0, ).

a-2 1

Multiplying both sides of (4.2) by t 2 € 2y, (t;&,1) and integrating with respect to t from 0 to ©©, we get
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Now using (2.1) and (1.15), we obtain
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