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ABSTRACT

In this paper, the qualitative characteristics of dispersion relation for a helically corrugated waveguide are
discussed with numerical approach which is based on solution of dispersion equation derived from theory.
It imposes certain restrictions allowed for the values of the axial and azimuthal symmetry of the structure.

The last section deals with results and discussion for different corrugation depth and azimuthal periodicity

of the structure.

INTRODUCTION

Metal hollow waveguides with various types of
periodic corrugation are widely used in high-power
microwave electronics. One such structure that has
recently attracted considerable interest consists of a
helical corrugation in the wall of a circular cylindrical
waveguide, which involves both axial and azimuthal
periodicity. This provides asymmetry of the wave
dispersion for circularly polarized modes, resulting in
additional mode selection. These properties make
waveguides with a helical corrugation attractive for a
large number of applications.[7]

In particular, they have been used as slow-
wave interaction structures in relativistic Cherenkov
devices in Bragg and as mode converters etc.
Helically corrugated waveguides have recently been
successfully used as interaction regions in gyrotron
traveling-wave tubes (GTWTs), and gyrotron
backward-wave oscillators (GBWOs) and as a
dispersive medium for passive microwave pulse
compression [1-4].

Due to this wide applicability, it is relevant
and important to investigate the electrodynamic
properties of such waveguides by analytical

approach and confirm the validity of the results by
comparison with simulation and experimental
studies. (5).

Helical corrugation of the inner surface of
an oversized circular waveguide provides very
flexible dispersion characteristic of an eigenwave.
Under certain corrugation parameters, the
eigenwave can possess a sufficiently high and almost
constant group velocity over a wide frequency band
in the region of close-to-zero axial wavenumber [6].

In previous paper [7], we derived the
dispersion relation for a helically corrugated
waveguide and discussed the result of dispersion for
periodicity in azimuthal direction ¢i1. where

2r
0o =— qo=0,and 1.

2

Here the well known Floquet’s theorem is
used which deals with the eigenfunctions of wave
equation in an infinite periodic structure. It imposes
certain restrictions allowed by the axial and
azimuthal symmetry of the structure.[7]

The principles of synthesizing the necessary
dispersion and its qualitative characteristics are
discussed with numerical approach which is based
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on solution of a dispersion equation derived from Wall radius R(Z,Q): R, +hCOS(kOZ+q09)
the theory [7]. In this paper necessary qualitative >(1)

characteristic are discussed for qo =3 with numerical

approach and compared to other values of qo .The 27 27 o

. ) . . Where k0 =— and (, =— Periodicity in
last section deals with results and discussion. z, o
axial direction is zo while periodicity in azimuthal

direction is ¢1.

FIELDS IN HELICAL WAVEGUIDE

Let us consider a waveguide with the helical profile Here Ro is the mean radius of the waveguide, h is the

of its inner surface represented in a cylindrical amplitude of the corrugation, and z s the

corrugation period.

coordinate system (r, o, z) as follows:

|

\ %

Figure.1 Schematic view of a waveguide with a three-fold right-handed (go=3) helical corrugation.

Due to Floquet periodicity both in azimuthal as well as axial direction, we can write the azimuthal as well as axial
fields as

I k
Ikznﬂn ﬂ ‘J (ﬂn )Anp _p_‘le(ﬂnr)an

Ik
_ Przn ‘le(ﬂnr)Arlp —ikg, —— ,3 J, (,Bnr)D and (2)
B3, (BA,

k
p_‘]Ip(ﬂnr)p‘np Ikznﬂn ﬁ ‘] (ﬂnr)D

E N N e'(”np .k a J ( ) kazn J ( )D ( )
n=—N p=—N ﬂnz " 8ﬂnr Ip " P r Ip " h
ﬁnz‘]lp(ﬁnr)[:np

where
Ppp = (Wt —kzpnz—1,0), ko= kz+nkg and I, =1+ pq,

Here N is an integer tending to infinity.

Vol (9), No.4 April, 2021 ISIRS




International Journal of Scientific & Innovative Research Studies ISSN : 2347-7660 (Print) | ISSN : 2454-1818 (Online)

BOUNDARY CONDITIONS

The tangential component of electric field must vanish at the metallic surface.

This result in

E, —hk, sin(k,z + q,0)E, =0 > (4)
R(z,0)=Ryy+hcos(kyz+qe0)

And

R(z,0)=Ry+hcos(kyz+qe0) — 0> (5)

E, +acos(k,z+q,0)E, —q,asin(k,z +q,0)E,
h

here o =— (6)
R

Substituting electric field components Er , Ee from (6) in the first and second boundary conditions we get

3, (B ) e A~ J (B.R)D, }}zoe(m

n

J:]ﬂ][kmﬂn(\ll 1+J,+1)Anp |k,8n(J. 4 J|+1)D

Z Z /:"p {ﬁn‘] (ﬂ R) hkoSin(koZ"'QO {Ikznﬁn OB

I
B ik (J -] )A =0->(7b)
n=—N p=—N ﬁnz qoasin(u' zn:Bn I,-1 I,+1 ) np
2 _kﬂ”(‘]hrl +‘]Ip+1)an
— _ 1 _
We drop the common factor — (wt —k.z—19) from Pop = {f‘Jt L ipﬁ] )
and substituting koZ =1, Gefl =6 and u+d =u.

Also dropping the argument ﬂn I' from Bessel functions, we get

N N nuspd
Z Z - p]{:Ja,, np — ﬁ sin(u }[ (fa,,— ffp—i)’j‘np‘k(ffp-“”rfﬁ‘l)ﬂ”p ]}:U

n=-Np=-N i > (8)

Mﬂ[kmﬂn (J|p-1 + ‘]lp+1)Anp +ikp, (‘]Ip—l - J|p+1)an]+

N ei(nu+p5) 2

2

- kﬂn (‘le—l + le+1)an

DISPERSION RELATION

i(mu+o05)

Rewriting equations (8) and (9) and multiplying € , and we get
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gill-m)u+(p-0)s] hk, 3,
2

{ﬂﬁle A, - sin(u')[ikzn (J,p,1 -J pm)Anp - k(le,1 + J,pH)an }:o > (10)

v gilme(op] M‘Lﬂ[kznﬂn(J,p1+J|p+l)Anp+ikﬂn(J|p1_J|p+l)an]+
R
2

- kﬂn (‘] I,-1 +J Ip+1 an

Integrate above equations over u in (limit—mttom)

We evaluate the integral

ikzn (H Ir:)m—l _ H Ir;m+l _ LII'I:'P]. + LI|’1:1+1 )Anp

N N H
4z ihk, S

Z Z B2 ﬁ”ZJITJmA”p + Z_ ; nm-1 nm+1 nm-11 nm+1 §p—o—n+m,0 =0

n=—N p=—N ﬁn _k(H|p —H,p _I—Ip _Llp )an
ﬂzJ nm _ hkoﬂn k (H nm-1 H nm+l an—l + an+1) A
N N 4 nvl, 4 zn [ [ Ip Iy np
a2 - 5p—o—n+m,0 =0 > (12)
n=—N p=-N ﬂn _ |hk04k,8n |:(H|:m1 _ H|r:]m+1 + Lr|1:1—1 _ L?;n+l)i|an

Similarly integrating equation (11) gives

ak ﬂ -1 +1 -1 +1
ol + 1 o Z2 (e s s 1)

A

Qocr "
MR Ee A Ve T bl
—2r Yy Y = '3 onemo =0 > (13)
n=—N p=—N ﬂn kﬁ (H nm _ an)_l_ akﬂn (H nm-1 + H nm+1 _ an—l _ an+l)
[P, )T\ Iy Iy Iy
+i Dup

+ qua kﬂn (H Ir:]m—l -H Ir:)m+1 + LP?_I _ Lr:mlj

Equations (12) and (13), will give the dispersion relation
We denote
i=2N+1[N+m]+N+o+1
i=@N+1[N+n]+N+p+1,

Then (12) and (13) can be written as
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(2N+1)(2N+1)
?TU.Gj +Uinj):O - (14a)

j=1
And
(2N+1)(2N+1)
i?\/ijGj +Winj): 0 > (14b)
j=1
Where
Ty = [JI"J" - %(H S T S Fi )}5 p-onsmo > (152)
~ihkk,

nm-1 nm+1 nm-1 nm+1
i = 4ﬂ (Hlp — H|p * + Llp - I—|p - ) 5p—0—n+m,0 - (15b)

n

(H Inm + L?m)+ g(H Inm—l + H Inm+1 + L?m—l + L?erl)_"_
p p 2 p p p p

k
i —_m Op-o-nimo 2 (15¢)
B | Qo (H M-l pymed ) me1 L?m+1)
2 p P p P
] Hm_ L:]m + g(H nm-1 +H nm+1 L" m-1 _ L:1m+1)
ik ( 'o ) 20 ' ' » s > (15d)

ij — p—o—n+m,0
o _ —
ﬁn + q02 [le:)m 1_ H|r;m+1 + L?;n 1 Ll|'1:1+l)

U
v, w, |k, [T 70

For non trivial solution the determinant of the matrix must be zero.

The required cold dispersion relation for helically corrugated waveguide can be given by the following matrix.

Do k)=def T 1|0
w,k)=de v, W, | > (17)

in order to have non-zero Gj and Kj in (17).

RESULTS AND DISCUSSION Corrugation period Z, =2.89, I=1

In this section we examine the operation of helically 0y = 3 corrugation depth h= 0.19cm, 0.175cm,
corrugated waveguide on the basis of numerical
results obtained on the basis of above analytical

0.14cm, 0.1cm, 0.01cm.

results. Dispersion curves are obtained for the Qo =2, corrugation depth h= 0.19cm, 0.175cm,

following set of parameters: 0.14cm, 0.1cm, 0.01cm.

Mean radius of the waveguide R, =1.47cm
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In the subsequent computation, we limit ourselves
to the case of (I=0 and I=1) for simplicity. To clarify
the nature of (16), we consider the case without
corrugation. Putting h =0and ¢, = 0,it results in
the conventional dispersion relation. When the
amplitude of corrugation decrease, the dispersion
relation in the helically corrugated waveguide
become close to those of the smooth waveguide as
shown in Figure 2.

Cylindrical Modes

40
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Dispersion curves for |=1 is numerically obtained
from (17) for the given set of corrugation depth. The
rank of determinant in (17) is infinite, and we have
to approximate the determinant with an adequate
finite rank in numerical analysis. In our numerical
calculation, we consider N=2 the determinant of
the order 50 x 50 is obtained.

Radius of waveguide =1.47cm

Angular Frequency (GHz)

il I I I

-4 3 2 -1

wavenumber (cm™1)

Figure .2 Dispersion characteristics of a cylindrical smooth waveguide of radius 1.47cm and light line.

Figure 2 shows TM and TE modes in cylindrical
smooth waveguide with radius 1.47cm. The figure is
drawn so that modes can be identified in the
subsequent figures.

Figure 3 represent the dispersion relation of
radius 1.47cm, corrugation period 2.89 and the

Ri=147em  zF=2.89em =3 h=0.0lcm

lowest value of corrugation amplitude 0.01cm
among all calculated results.TE11 and TE21 are shown.
As the corrugation amplitude is very small the
characteristics are similar to the cylindrical smooth

waveguide.
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Figure.3(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.01cm.

Figure 4 shows dispersion relation for corrugation amplitude of 0.1cm. Coupling of TE11 and TE2: are observed.

Ri=147em  z;=2.89em =3 b=0.1cm
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Fig. 4(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.1cm.
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Figure. 5(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.175cm.
Coupling of TE11 mode and TE2: modes is evident (b).
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Figure 5 and 6 present dispersion curve for corrugation amplitude 0.175cm and 0.19cm respectively where the
Coupling of TE11 and TE21are evident.
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Figure.6 (a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.19cm.
The coupling of TE11 mode and TE21 modes is evident.

Figure 5 and 6 present dispersion curve for corrugation amplitude 0.175cm and 0.19cm respectively where the
Coupling of TE11 and TE21 are evident

Frequency f(GHz)

Wavenumber k (em™)

Figure.7 (a) Comparision of numerical results of dispersion curves for different value of corrugation amplitude.

Here curves A, B, C, D, E, F and G are of corrugation amplitudes 0.01, 0.05,0.1,0.125,0.15,0.175 and 0.20cm
respectively.
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In figure. 7 shows the variation of frequency for
various value of corrugation amplitude. Larger
values of corrugation results in stronger coupling of
TE11 and TE21 modes.

A helical wall perturbation can provide
selective coupling between a higher and lower
circularly polarized mode. With appropriate choice
of parameters, the operating eigenwave of helically
corrugated waveguide will be interpreted as the
modified or strongly perturbed mode TEii1. The
results obtained were compared with experimental
and simulation which were found in good agreement

[1l.
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