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ABSTRACT   

In the problem I consider unsteady flow of a viscous incompressible fluid in a channel bounded by a lower 

plane surface and an upper wavy surface. The waviness in the surface is a function of time as well as axial 

distance. The complete Navier-Stokes equations are solved using regular perturbation method. The 

expressions for axial and normal velocities are derived and exhibited through graphs for different values of 

the parameters. 
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INTRODUCTION  

The effects of axial roughness on velocity distribution for a fluid flowing in a tube or circular cylinder have been 

investigated by many researchers. Ralph A 6A studied the problem for oscillatory flows in wavy wall tubes for 

Reynolds numbers up to 300. Prakash A5A considered the slow unsteady flow of a viscous incompressible fluid in 

axisymmetric tube of varying radius. He obtained the series solution for stream function and pressure in powers of 

the small ratio of mean radius in characteristic length along the axes. Maha Lakshmi and DevanathanA4A studied 

the effects of buoyancy forces on the steady laminar viscous flow in a horizontal tube of varying cross section. 

LyneA3Aanalysed the unsteady viscous flow over a wavy wall. Gupta and Goyal A2A discussed the unsteady plane 

Poiseuille flow between two parallel plates. Duck A1A discussed the effects of small surface perturbations on the 

pulsatile boundary layer on a semi-infinite flat plate.  

In the present paper I am considering the unsteady flow of a viscous incompressible fluid through a 

channel bounded by a lower plane surface and an upper wavy surface. The waviness in upper surface is varying 

with time as well as with axial distance and it is described by 𝑦 = 𝑎 +  𝜀 cos  (𝑤1𝑡 +  𝑤2𝑥) where 𝜀 is small 

compared to mean distance '2a' between the surface. The flow in the channel is developed due to a constant 

pressure gradient in the x-direction. Regular perturbation technique has been applied to obtain the expression for 

axial and normal velocities. The obtained solutions have been numerically worked out for different values of the 

parameters.  

PROBLEM FORMULATION 

Consider the unsteady flow of a viscous 

incompressible fluid in a channel between two 

plates, the lower plate is taken as horizontal and 

upper plate is a wavy surface. We take x axis in the 

axial direction of the channel and y axis is 

perpendicular to it. Motion is two dimensional so all 

the variables will be independent of z coordinates. 

Taking origin in the middle point of channel. we take 

x-axis in the direction of fluid flow. The lower plate is 

situated at y = -a and upper wavy plate is situated at 

𝑦 = 𝑎 + 𝜀 cos  (𝑤1𝑡 +  𝑤2𝑥). 

The Navier-Stokes equations for this flow 

reduce to  
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ………. (1.1) 

𝜚 (
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑦2) 

  ………… (1.2) 

𝜚 (
𝜕𝑣

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑦
) =  𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)  

  ………… (1.3) 

and the boundary conditions are 

𝑢 = 𝑜 𝑎𝑡 𝑦 = 𝑎 + 𝜀 cos  (𝑤1𝑡 + 𝑤2𝑥) ……….. (1.4) 

𝑢 = 𝑜, 𝑣 = 𝑜 𝑎𝑡 𝑦 − −𝑎)  

where 'a' be half height of the channel and 𝜀 is small 

compared to 'a' and u, v are the axial and normal 

velocities in the x and y direction, 𝜇 is the coefficient 

of viscosity. 

Introducing the following non-dimensional 

quantities as : 

�̅� =
𝑥

𝑎
 , �̅� =  

𝑦

𝑎
 , �̅� =  

𝑢𝑎

𝜈
 , ϸ̅ =  

ϸ𝑎2

𝜈
 , 𝑡̅ =  

𝑡𝜈

𝑎2  

into the equations (1.1) to (1.4) and after dropping 

the bars, we obtain the following set of equations 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ………. (1.5) 

𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=  −

𝜕ϸ

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) ……… (1.6) 

𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 ………..(1.7) 

The corresponding boundary conditions reduce to  

𝑢 = 𝑜 𝑎𝑡 𝑦 = 1 + 𝜀 cos  (𝑤1𝑡 +  𝑤2𝑥)  

    

𝑢 = 𝑜, 𝑣 = 𝑜 𝑎𝑡 𝑦 =  −1  ……….. (1.8) 

where�̅�1 =
𝑤1𝑎2

𝜈
 , �̅�2 = 𝑤2𝑎 

SOLUTION OF THE PROBLEM 

Owing to the upper surface, we seek the solution of 

equations (1.6) - (1.8) in the form 

𝑢 = 𝑢0(𝑦) + ∑ 𝜀𝑖𝑢𝑖
∞
𝑖=1 (𝑥, 𝑦, 𝑡)   

𝑣 = 𝑣0(𝑦) + ∑ 𝜀𝑖𝑣𝑖
∞
𝑖=1 (𝑥, 𝑦, 𝑡) ----------- (2.1) 

where𝑢0 and 𝑣0 are the solutions when the surface 

is smooth. 

Substituting (2.1) in (1.5) to (1.8) and comparing 

coefficients of like powers of 𝜀, we obtain:  

1st 𝜺𝟎 𝒕𝒆𝒓𝒎𝒔  

𝜕𝑢0

𝜕𝑥
= 0  ……. (2.2) 

𝜕2𝑢0

𝜕𝑦2 =
𝜕𝑝0

𝜕𝑥
= −𝐴0 ……. (2.3) 

where𝐴0 is constant pressure gradient in the x 

direction. The corresponding boundary conditions 

are 

𝑢0 = 𝑜, 𝑎𝑡 𝑦 =  1  

𝑢0 = 𝑜, 𝑣0 = 𝑜 𝑎𝑡 𝑦 = − 1 …….. (2.5) 

The boundary conditions have been obtained by 

having Taylor's expansions of the boundary 

conditions at 𝑦 = 1 + 𝜀 cos  (𝑤1𝑡 +  𝑤2𝑥) and 

retaining terms independent of 𝜀. We obtain the 

solution of (2.2) to (2.5) as: 

𝑢0 =
𝐴0

2
 (1 − 𝑦2)   ………. (2.6) 

 𝜺𝟎 𝒕𝒆𝒓𝒎𝒔  

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0   ………. (2.7) 

𝜕𝑢1

𝜕𝑥
+ 𝑢0

𝜕𝑢1

𝜕𝑥
+ 𝑣1

𝜕𝑢0

𝜕𝑦
=

𝜕2𝑢1

𝜕𝑥2 +
𝜕2𝑢1

𝜕𝑦2  ………. (2.8) 

𝜕𝑣1

𝜕𝑡
+ 𝑢0

𝜕𝑣1

𝜕𝑥
=

𝜕2𝑣1

𝜕𝑥2 +
𝜕2𝑣1

𝜕𝑦2   ………. (2.9) 

and the boundary conditions reduce to  

𝑢1 = 𝐴0 cos  (𝑤1𝑡 + 𝑤2𝑥) 𝑎𝑡 𝑦 = 1  

𝑢1 = 𝑜, 𝑣1 = 𝑜 𝑎𝑡 𝑦 = −1  ……… (2.10) 

To solve these equations (2.7) to (2.9), let us 

introduce a stream function 𝜓 such that  

𝑢1 =  −
𝜕𝜓

𝜕𝑥
 , 𝑣1 =  

𝜕𝜓

𝜕𝑥
  ……… (2.11) 

then equation of continuity (2.7) is automatically 

satisfied. From (2.8) , (2.9) and (2.11) , we obtain  

−𝜓𝑥𝑦𝑡 + 𝜓𝑥𝑥𝑥𝑦 + 𝜓𝑦𝑦𝑥𝑦 = 0 ……… (2.12) 

Now let us take  
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𝜓 = 𝑅𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑒𝑖(𝑤1𝑡+𝑤2𝑥) ∑ 𝑤1
𝑛𝑤2

𝑠𝑓𝑛𝑠 (𝑦)𝑛 ,𝑠

 ………. (2.13) 

Substituting (2.13) into (2.12) and collecting the 

coefficients of like powers of 𝑤1 𝑎𝑛𝑑 𝑤2, we obtain 

the following set of ordinary differential equations 

𝑓00
′′′ = 0    ……… (2.14a) 

𝑖 𝑓00
′′′ + 𝑓00

′ = 0   ……… (2.14b) 

𝑓01
′′′ = 0    ……… (2.14c) 

𝑖 𝑓11
′′′ + 𝑓01

′ = 0   ……… (2.14d) 

𝑖 𝑓20
′′′ + 𝑓10

′ = 0   ……… (2.14e) 

𝑖 𝑓02
′′′− 𝑖 𝑓00

′ = 0   ……… (2.14f) 

𝑖 𝑓21
′′′ + 𝑓11

′ = 0   ……… (2.14g) 

𝑖 𝑓22
′′′− 𝑖𝑓10

′ + 𝑓02
′ = 0  ……… (2.14h) 

𝑖 𝑓22
′′′+ 𝑓12

′ −  𝑖 𝑓20
′ = 0  ……… (2.14i) 

and corresponding boundary conditions are  

𝑎𝑡 𝑦 = 1 , 𝑓00
′ =  − 𝐴0 , 𝑓10

′ =  𝑓01
′ =  𝑓11

′ = 𝑓12
′ =

𝑓21
′ = 𝑓20

′ = 𝑓02
′ = 𝑓22

′ = 0  

 

𝑎𝑡 𝑦 =  −1  𝑓00
′ =  𝑓01

′ =  𝑓10
′ =  𝑓11

′ = 𝑓12
′ =

𝑓21
′ = 𝑓20

′ = 𝑓02
′ = 𝑓22

′ = 0  

 

𝑓00 =  𝑓01 = 𝑓10 = 𝑓11 = 𝑓12 = 𝑓21 = 𝑓20 = 𝑓02 =

𝑓22 = 0 ……(2.15) 

 

We obtain the solution from these equations (2.14a - 

2.14i) under the boundary conditions (2.15) 

RESULTS 

The first order axial and normal velocity component 

𝑖, 𝑒, 𝑢1 and 𝑣1 are shown in Fig. 1 and Fig. 2 

respectively. The Fig. 1 indicates variation in 
𝑢1

𝐴0
⁄  

for different values of 𝑤1𝑡 + 𝑤2𝑥taking 𝑤1 = 𝑤2 =

𝑎 = 1. Since in the expression of 
𝑢1

𝐴0
⁄  is guided by 

this term as evident in the figure. The perturbation 

part 
𝑣1

𝐴0
⁄ is shown in Fig. 2. It is in the normal 

velocity phase difference of 𝜋
2⁄  with axial 

component. 

 The composite axial velocity u is shown in 

fig. 3 for 𝜀 = 0.1 𝑎𝑛𝑑 𝑤1 = 𝑤2 = 1. for the sake of 

comparison, the zeroth order axial velocity 

component 𝑢0 is also shown there. It is observed 

that the maximum velocity occurs at y = 0 when 

these variation in 'u' due to surface waviness are 

more prominent for values of 𝑦 𝜀 (0, 1) compared to 

the value of 𝑦 𝜀 (−1, 0). This is in agreement with 

the physical situation also. Further we have 𝑢 > 𝑢0 

at corresponding values of y for 𝑤1𝑡 + 𝑤2𝑥 =

0, 2𝜋 𝑎𝑛𝑑 𝑢 < 𝑢0 𝑓𝑜𝑟 𝑤1𝑡 + 𝑤2𝑥 = 𝜋. Fig. 4 shows 

axial velocity component for different values of y in a 

complete wave. 

REFERENCES 

1. Duck, P.W. (1988) : The effects of small surface 

perturbation on the pulsatile boundary layer on 

a semi-infinite flat plate. J. Fluid. Mech. 197, p. 

259-293. 

2. Gupta, M.C. and Goyal, M.C. (1971) : Unsteady 

plane poiseuille flow between two parallel 

plates. Proc. Indian Acad. Sci. Vol. 74, p. 68-78. 

3. Lyne, W.H. (1971) : Unsteady viscous flow over a 

wavy wall. J. Fluid Mech. Vol. 50, p. 33-48. 

4. Mahalakshmi, C.V. and Devanathan, R. (1982) : 

Laminar forced and free convection in horizontal 

tubes of varying cross-section at low Rayleigh 

number. Ind. J. Pure Appl. Math. , Vol. 13, p.946. 

5. Prakash, Om (1977) : Slow unsteady flow in a 

axisymmetric tube of varying radius. Indian J. 

Pure Appl. Maths., Vol. 8, p. 43. 

6. Ralph, M.E. (1986) : Oscillatory flows in wavy 

walled tubes. J. Fluid Mech. Vol. 168, p. 515-

540. 

 



International Journal of Scientific & Innovative Research Studies  ISSN : 2347-7660 (Print)  |  ISSN : 2454-1818 (Online) 

 

102 | Vol (5), No.5, May, 2017                                                                                                                                                                 IJSIRS 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
Copyright © 2017, Punit Bansal. This is an open access refereed article distributed under the creative common 
attribution license which permits unrestricted use, distribution and reproduction in any medium, provided the 
original work is properly cited. 


