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ABSTRACT

In this paper, we establish four interesting theorems exhibiting interconnections between images and originals of
related functions in the Laplace transform. Further, we obtain five new and general integrals by the application of the
theorems. The importance of our findings lies in the fact that they involve the A -function which are very general in
nature and are capable of yielding a large number of simpler and useful integrals merely by specializing the
parameters in them.
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INTRODUCTION

The Laplace transform occurring in the paper will be defined in the following usual manner:
f(s)=L{f(x);s} j e % f (x)dx (1.1)
0

Where Re(s)>0 and the function f(X) is such that the integral on the R.H.S. of (1.1) is absolutely convergent.

The well known Parseval Goldstein theorem for the transform will be in the sequel:

if f,(s)=L{f(x);s} and T,(s)=L{f,(x);s}
Then T f.(x) f,(x)dx =T f,(x) f,(x)dx (1.2)

l(aj VO )n Represents the set of N pairs of parameters the A -function was defined by Gautam G.P. and Goyal
A.N.[2] as

m.n 1(aj’ai)P _i s
105, 8y)q 27 JL. F(s)xds (13)
Where
HF(a +a. s)Hr(]_ b ﬂs)
)= Jp_l (1.4)
H F(l-a, _“iS)H (b, + 3,9
j=m+1 j=n+1
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fr
The integral on the right-hand side of (1.3) is convergent when f>0and |arg(ux)| < 7 , Where

f=Re(iaJ——Za +Zﬂ Zﬂ’

j=m+1 j=n+1
o s
o=TTa 14" :9
j=1 j=1
(1.3) reduces to H -function given by Fox the following relation
(1-3;,a)),
1(1_bj 1ﬂj)q

AN —Hmn 1(aj ! aj)P
o< | 0,0,

(1.6)

The following Laplace transforms will be required to prove our theorems. They can be computed directly from the

defining integral (1.3) of the A -function.

s” m,'q“[zs

(aj. a)lp] L{Sp—lAmn [ZX/?.

(05,814 p,g+1

@j.aj)p .
G ,(p,ﬂ)]’ S} (1.7)

b;
Where min< minRe| p+A—- |,Re(s), A

1<j<m
i

(@j.a@)p ]

—p AM,N
ALz (6.5 1q

p+1,q J)lq

L{sp—lAm n [ZX (a (= Pi)],s} (1.8)

Where max Re ﬂ,——p <0,{Re(s),1}>0

1I<j<m
J

THE THEOREMS

Theorem 2.1:

it L{f(x);s}=T(s) (2.1)
And

{xp TEX)ADT [2x Esj"v’;ji));q"y(lfp’ﬂ)]; s} =h(s) (2.2)
Then
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j(x +5)7 f (x) A [2x* EZ}J f;f;i: Jdx = h(s) (2.3)
0

. 1-b. i
Where min Rel 4 L+ p |>0, min{Re(s), 2} > 0 and the integrals involved in equations (2.1), (2.2) and
<J=n .
j

(2.3) are absolutely convergent.

On reducing the A -function occurring in (2.2) and (2.3) to the Wright hypergeometric function, we can easily
arrive at the following results:

Corollary 2.1:

it L{f(x);s}=T(s) (2.4)
And

L{x’”?(x) W ( S ) : s} =h(s) (2.5)
Then

T(x +9) 7 F(X) v, (5;;;;;;;;; (Z(X+ s)%)dx =h(s) (2.6)

0

Where min{Re(s), A} > 0 and the integrals involved in equations (2.1), (2.2) and (2.3) are absolutely

convergent.

Similarly, reducing A -function in (2.3) to the Bessel function ([6], p.271, eq. (8)), we have the following corollary
after a little simplification.

Theorem 2.2:

it L{f(x);s}=T(s) (2.10)
And

L{x”‘le‘ax T)ATT [2x EZ}J ,’Z,-j))ff:&l— ol S} =h(s) (2.11)
Then

j(x +s)7 f(x—a)Alv[z(x+s)™" EE}J ;,'))f: ]dx = h(s) (2.12)
0

: 1-b :
Where min Re| 4 L+ p|>0, min{Re(s),A}>0,a >0 and the integrals involved are absolutely
<j<n _
j

convergent.

The above theorem is a generalization of Theorem 2.1 and reduces to it. On taking d = 0.
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On reducing the A -function occurringin (2.12) to F(Z(X+S)_/1, p') , the poly logarithm of order p' ({11, p.30,

1.11, eq (14)) with a slight correction of a negative sign, we can easily at the following result.

Theorem 2.3:
it L{f(x);s}=T(s) (2.16)

And

p+L,q

p-l—ax § m,n 2
L{x e F(X)A] [zx AN

(aj.a )Lp,(l—p,i)]; S} — h(s) (217)

Then

(aj,aj)l‘p]dx — h(s) (2.18)

.[(X +3)77 f(x) A'Ta”[z(x + S)i (b i)
0

a; .
Where max Re| A—— p | <0, min{Re(s), 2} >0,a >0 and the integrals involved are absolutely
I<j<m o.
j

convergent. Reducing the I-function involved in (2.8), to the Riemann Zeta function ¢[Z(X+S)Z, p1, ([, p.27,
1.11 eq. (1)) and a little simplification leads to:

Theorem 2.4:
it L{f(x);s}=T(s) (2.25)
And

L {x’p TF)A[zx

(@j.aj)p 1.
o Tish=his) (2.26)

Then

0

j(x +5)PHf(X)A™" [2x*

ma (@j.2j)1p ]dX = h(s) (2.27)
0

(0;.8i)1,q:(0:4)

a; .
Where max Re| A—L— p | <0, min{Re(s), 2} >0,a >0 and the integrals involved are absolutely
I<j<m o.
j

convergent.
Reducing the A -function involved in (2.26), to the g- function, ([7], p.98, eq. (1.3)), and a little simplification

yields our next result:

INTEGRALS

By specializing f(x), in the above theorem/ corollaries we can obtain new integrals involving A -functions. Thus, in

Theorem 2.1, if we take T (X) = (X2 + ZaX)HJZ,

The following integral follows after a little simplification with the help of ([7], p.138, eq. (13)):
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[ O +220) 2 (x+5)° AT [2(x+5) 7 |55 1
0
- v+2r
*/_ r(v+1/2)(2a)[ =2 — ?
“2sin )f’ TR r+D(s-a)”

n+1 -1 |(p=2v+2r,2).(a;,a;)
Ariqalz(8=8)" | o]

i (alz)v+2r

(s- a)p SriT(—v+r+1)(s—a)”

n+l -2 [(p=2v+2r,2),(aj,a),
Atealz(8=3) " |6 ooy 1]

(3.1)

Provided v >—1/2 and|arg(a) |< 7z, min< min Re

1<j<n

,Re(s), 4

j

If we reduce the A -functions involved in (3.1) to A -function, we get the result in a very elegant form, after a
little simplification:

T(x2 +2ax)" 2 (x+s) P AT [z(x+5)

(aj.@j)p
(0.5, 10X

N F(v+1/2)(2a)r[ a j

“2sinve (s—a)”" | 2(s-a)
[ 01;mn1,0 rz(s-a)*

,0;p,q+1;0,2 a 2
7(2(5—&1)]

0,;m,n;1,0 [z(s—a)"
AiO p,q+1,0,2 (

(p—2v+2r,l),(p—2v+2r,i),(aj \aj )1’p ]
(0.8 )1.0-(p A (LD (A-v.1)

(P.2).(P. 2,250 )1 p
2|ty (o A0 ] ] (3.2)

2(s—a)]

Again taking f (X) = X" in Theorem 2.2 yields after a little simplification:

T(x—a)v(x+s) P AT z(x+8)™

(@j.@j)p
0).5). X

r'(v) m.nel 2| (epvia) (e
iy (s+a)’ " Arigalz(s+a) by Biho(0d) ] (3.3)
1- b-
Provided that min< min Re 7 ,Re(v+1,59),4
1<j<n )
j
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Similarly, if we take f (X) = (L+a/ x)"'* p¥(1+2x/a) where P*(X) is the Legendre function

([4],p.1009,eqn(8.771(1)), in theorem 2.3, simply using ([3],p.216,eq.(16);p.294,eqn(5)), we have an interesting
integral:

[@rar Rl @+alx+a)” ATiz(x+s) ) Tdx
0

q (05,814
1 w r
_a” Z(s—aj (n+1-k),
Sp+n

=\ S r!

Am+2,n [Z(S)l

(@j,@))1.p(1-p+k=1,2),(1-p,2) ]
p+2,9+2

A=p=n-r,2),(=p+n,2),(bj . Bj )14

(3.4)

Provided that

a.
Re(k) <1, maxRe| A——p+n |<0, min{Re(s),A}>0,|arg(a)[> 0
o.

I<j<m
j
Next, taking T (X) =X" in Theorem 2.4, a little simplification yields the following integral:

(aj 1 )1,p

p,a+ RPN L

[ 0cra)™ 007 AL [2(0)°

r o
o ATt )50, ]

e e (3.5)

a 1-b.
maxRe| A—1+p-v-1|{<0,4>0 , minRe|{A—L+p,5 (>0
1<j<m 0‘,— 1<j<n i

Also, in Theorem 2.3, if we take f (X) =x"! my'qn[ZX/l], and reduce the A’T;;q involved in

(2.17) to AFT‘(;) , we get a known result ([5],p.34), after a little simplification.

.. _ _ m,n . . 2,0 (1-a,1)
Again, ifwe take A =1, 0=/ and A/ occurringin (2.18)as A [Z(X+ S) |y asy) ],

We shall easily arrive at a result by Jain ([6], p.192) after a little simplification.
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